PECE Algorithms for the Solution of Stiff Systems
نویسندگان
چکیده
This paper presents a study of a class of PECE algorithms consisting of an application of a predictor followed by application of one iteration of a pseudo NewtonRaphson method to a corrector. Such algorithms require precisely two evaluations of the derivative function for each forward step. Theorems 1 and 4 show that the stability properties of such algorithms compare favorably with those obtained with application of the NewtonRaphson method to the corrector iterated to convergence. A subclass of these algorithms have local truncation error of second order and some have local truncation error of third order. Theorems 2 and 3 exhibit members of this subclass wherein an estimate of the local truncation error is explicit in the algorithm at each step. Initially (in Theorem 1) these algorithms are characterized in terms of their stability properties in the limit as the interval of integration becomes indefinitely large. In Section 5, their properties for other intervals of integration are discussed through the study of some enclosure properties.
منابع مشابه
A hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملLocal Annihilation Method and Some Stiff Problems
In this article, a new scheme inspired from collocation method is presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function. Then, the error analysis of this method is investigated by presenting an error bound. Numerical comparisons indicate that the presented method yields accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010